Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528538

RESUMO

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Assuntos
Condrossarcoma , Glucosídeos Iridoides , Osteoartrite , Humanos , Condrócitos/metabolismo , Lipopolissacarídeos/toxicidade , Osteoartrite/metabolismo , Sincalida/metabolismo , Sincalida/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hipertrofia , Condrossarcoma/tratamento farmacológico , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542153

RESUMO

Chondrosarcoma, the second most common primary malignant bone tumor, originates from cartilaginous tissue and accounts for almost 20% of all primary bone tumors. The management of chondrosarcoma remains challenging due to its diverse clinical course and prognosis, which can range from benign to highly aggressive with a huge risk of metastasis. Emerging research has demonstrated the importance of microRNA (miRNA) dysregulation in the pathogenesis of chondrosarcoma. MiRNAs are small, noncoding RNA molecules that play an essential role in gene expression regulation by targeting specific messenger RNAs (mRNAs) for degradation or translational repression. This article provides an extensive review of current miRNA research in chondrosarcoma, focusing on diagnostic strategies, cell cycle regulation, drug resistance, biomarkers of progression, and stem cell phenotype. We will examine recent studies identifying differentially expressed miRNAs in chondrosarcoma compared to normal cartilage tissue, exploring their potential as diagnostic and prognostic biomarkers. Furthermore, we will discuss the role of miRNAs in regulating cell cycle progression and their potential as therapeutic targets to overcome drug resistance. We will also investigate the prospective utility of miRNAs as biomarkers of progression and their role in modulating the stem cell phenotype of chondrosarcoma cells. This article offers a comprehensive analysis of current miRNA research in chondrosarcoma, focusing on its potential as diagnostic and prognostic biomarkers, therapeutic targets, and regulators of disease progression. By integrating the latest discoveries in this field, we aim to contribute to the development of novel approaches to the prevention, diagnosis, and treatment of chondrosarcoma, ultimately enhancing patient outcomes.


Assuntos
Neoplasias Ósseas , Condrossarcoma , MicroRNAs , Segunda Neoplasia Primária , Humanos , MicroRNAs/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Condrossarcoma/diagnóstico , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Segunda Neoplasia Primária/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
EBioMedicine ; 102: 105090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547578

RESUMO

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Assuntos
Aminopiridinas , Neoplasias Ósseas , Condrossarcoma , Sarcoma , Triazinas , Humanos , Animais , Camundongos , Medicina de Precisão , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Isocitrato Desidrogenase/genética , Mutação , Neoplasias Ósseas/genética
4.
Cell Rep Med ; 5(1): 101385, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232691

RESUMO

In this Backstory, we narrate our journey in establishing a multidisciplinary team for sarcoma research and uncovering vulnerabilities in chondrosarcoma cells associated with their NAD+ dependencies for survival.1 Our findings hold promise for exploitation, yielding a synergistic cytotoxic effect when combined with systemic therapy.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Condrossarcoma , Humanos , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Condrossarcoma/genética , Condrossarcoma/tratamento farmacológico
5.
Curr Oncol ; 31(1): 566-578, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275833

RESUMO

Dedifferentiated chondrosarcoma (DDCS) is a high-grade subtype of chondrosarcoma with the bimorphic histological appearance of a conventional chondrosarcoma component with abrupt transition to a high-grade, non-cartilaginous sarcoma. DDCS can be radiographically divided into central and peripheral types. Wide resection is currently the main therapeutic option for localized DDCS. Moreover, the effectiveness of adjuvant chemotherapy remains controversial. Therefore, we performed a systematic review of available evidence to evaluate the effect of adjuvant chemotherapy on localized DDCS. The purpose was to compare the 5-year survival rate among patients treated with surgery plus adjuvant chemotherapy or surgery alone for localized DDCS. The search was conducted in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Of the 217 studies shortlisted, 11 retrospective non-randomized studies (comprising 556 patients with localized DDCS) were selected. The 5-year survival rates were similar between the two treatment groups (28.2% (51/181) vs. 24.0% (90/375), respectively). The overall pooled odds ratio was 1.25 (95% confidence interval: 0.80-1.94; p = 0.324), and heterogeneity I2 was 2%. However, when limited to peripheral DDCS, adjuvant chemotherapy was associated with prolonged survival (p = 0.03). Due to the paucity of included studies and the absence of prospective comparative studies, no conclusions can be drawn regarding the effectiveness or ineffectiveness of adjuvant chemotherapy for localized DDCS.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Sarcoma , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Quimioterapia Adjuvante , Condrossarcoma/tratamento farmacológico , Sarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/cirurgia
6.
Cell Rep Med ; 5(1): 101342, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38128534

RESUMO

Chondrosarcomas represent the second most common primary bone malignancy. Despite the vulnerability of chondrosarcoma cells to nicotinamide adenine dinucleotide (NAD+) depletion, targeting the NAD+ synthesis pathway remains challenging due to broad implications in biological processes. Here, we establish SIRT1 as a central mediator reinforcing the dependency of chondrosarcoma cells on NAD+ metabolism via HIF-2α-mediated transcriptional reprogramming. SIRT1 knockdown abolishes aggressive phenotypes of chondrosarcomas in orthotopically transplanted tumors in mice. Chondrosarcoma cells thrive under glucose starvation by accumulating NAD+ and subsequently activating the SIRT1-HIF-2α axis. Decoupling this link via SIRT1 inhibition unleashes apoptosis and suppresses tumor progression in conjunction with chemotherapy. Unsupervised clustering analysis identifies a high-risk chondrosarcoma patient subgroup characterized by the upregulation of NAD+ biosynthesis genes. Finally, SIRT1 inhibition abolishes HIF-2α transcriptional activity and sensitizes chondrosarcoma cells to doxorubicin-induced cytotoxicity, irrespective of underlying pathways to accumulate intracellular NAD+. We provide system-level guidelines to develop therapeutic strategies for chondrosarcomas.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Animais , Camundongos , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Condrossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico
7.
Int J Biol Sci ; 19(16): 5174-5186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928274

RESUMO

Chondrosarcoma is the second most common type of bone cancer. At present, the most effective clinical course of action is surgical resection. Cisplatin is the chemotherapeutic medication most widely used for the treatment of chondrosarcoma; however, its effectiveness is severely hampered by drug resistance. In the current study, we compared cisplatin-resistant chondrosarcoma SW1353 cells with their parental cells via RNA sequencing. Our analysis revealed that glutamine metabolism is highly activated in resistant cells but glucose metabolism is not. Amphiregulin (AR), a ligand of the epidermal growth factor receptor, enhances glutamine metabolism and supports cisplatin resistance in human chondrosarcoma by promoting NADPH production and inhibiting reactive oxygen species (ROS) accumulation. The MEK, ERK, and NrF2 signaling pathways were shown to regulate AR-mediated alanine-serine-cysteine transporter 2 (ASCT2; also called SLC1A5) and glutaminase (GLS) expression as well as glutamine metabolism in cisplatin-resistant chondrosarcoma. The knockdown of AR expression in cisplatin-resistant chondrosarcoma cells was shown to reduce the expression of SLC1A5 and GLS in vivo. These results indicate that AR and glutamine metabolism are worth pursuing as therapeutic targets in dealing with cisplatin-resistant human chondrosarcoma.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Anfirregulina/genética , Glutamina , Resistencia a Medicamentos Antineoplásicos/genética , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos
8.
J Cancer Res Ther ; 19(Supplement): S278-S284, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37148005

RESUMO

Background: The poor response of metastatic osteo- and chondrosarcomas to chemotherapy could be the result of multidrug resistance (MDR), which may be overcome through the use of small interfering RNA (siRNA). However, several methodologic questions remain unresolved. Aims: To test the toxicity of three commonly used siRNA transfection reagents and apply the least toxic reagent to investigate the siRNA-induced MDR1 mRNA knockdown. Methods: The toxicity of TransIT-TKO, Lipofectamine 2000, and X-tremeGENE siRNA transfection reagents was investigated on osteosarcoma (MG-63) and chondrosarcoma (SW1353) cell lines. The toxicity was measured at 4 and 24 hours using a MTT toxicity assay. The least toxic transfection reagent was applied to investigate the siRNA-induced MDR1 mRNA knockdown effect using qRT-PCR. Furthermore, five housekeeping genes were assessed in the BestKeeper software to obtain mRNA expression normalization. Results: Lipofectamine 2000 was the least toxic transfection reagent, reducing the cell viability only in chondrosarcoma 24 hours following exposure to the highest dose. In contrast, TransIT-TKO and X-tremeGENE transfection reagents displayed a significant reduction in cell viability in both chondrosarcoma after 4 hours and in osteosarcoma after 24 hours. Significant MDR1 mRNA silencing of over 80% was achieved in osteo- and chondrosarcoma using Lipofectamine at a final siRNA concentration of 25 nM. No significant dose response was observed in knockdown efficiency in either Lipofectamine or siRNA concentration. Conclusion: Lipofectamine 2000 was the least toxic transfection reagent in osteo- and chondrosarcoma. Successful siRNA-induced MDR1 mRNA silencing of over 80% was achieved.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Osteossarcoma , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Interferente Pequeno/genética , Transfecção , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética
9.
J Pineal Res ; 75(1): e12872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37057370

RESUMO

Chondrosarcoma has a high propensity to metastasize and responds poorly to chemotherapy and radiation treatment. The enzymatic activity of matrix metalloproteinases (MMPs) is very important in chondrosarcoma metastasis. Melatonin exhibits anticarcinogenic activity in many types of cancers by suppressing the expression of certain MMP family members, but this has not yet been clearly determined in chondrosarcoma. Our study demonstrates that MMP7 plays an essential role in chondrosarcoma cell proliferation, migration, and anoikis resistance. We also found that MMP7 is highly expressed in chondrosarcomas. Our in vitro and in vivo investigations show that melatonin strongly inhibits chondrosarcoma cell proliferation, migration, and anoikis resistance by directly suppressing MMP7 expression. Melatonin reduced MMP7 synthesis by promoting levels of miR-520f-3p expression, which were downregulated in human chondrosarcoma tissue samples. Pharmacological inhibition of miR-520f-3p markedly reversed the effects of melatonin upon chondrosarcoma proliferation and metastasis. Thus, our study suggests that melatonin has therapeutic potential for reducing the tumorigenesis and metastatic potential of chondrosarcoma via the miR-520f-3p/MMP7 axis.


Assuntos
Condrossarcoma , Melatonina , MicroRNAs , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Melatonina/farmacologia , Metaloproteinase 7 da Matriz/metabolismo , Proliferação de Células , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Condrossarcoma/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica
10.
Clin Orthop Relat Res ; 481(3): 608-619, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729612

RESUMO

BACKGROUND: Chondrosarcomas are well known for their resistance to conventional chemotherapy and radiotherapy treatment regimens, which is particularly detrimental in patients who have unresectable tumors. Recently, inhibition of poly(ADP-ribose) polymerase (PARP) by talazoparib was shown to sensitize chondrosarcoma cell lines to chemotherapy (temozolomide) or radiotherapy, irrespective of isocitrate dehydrogenase (IDH) mutation status. Because two-dimensionally grown cell lines have limitations and may not accurately represent the clinical response to drug treatment, we aimed to use a more representative three-dimensional alginate spheroid chondrosarcoma model. It is important to test therapeutic agents in vitro before testing them in animals or humans; therefore, we aimed to determine the effectiveness of a PARP inhibitor in reducing the viability of chondrosarcoma spheroids. Using a more stringent, complex in vitro model refines future therapeutic options for further investigation in animal models, increasing efficiency, reducing unnecessary animal use, and saving time and cost. QUESTIONS/PURPOSES: (1) Does talazoparib treatment slow or inhibit the growth of chondrosarcoma spheroids, and does an increased treatment duration change the drug's effect? (2) Does talazoparib work in synergy with temozolomide treatment to reduce the viability of chondrosarcoma spheroids? (3) Does talazoparib work in synergy with radiotherapy treatment to reduce the viability of chondrosarcoma spheroids? METHODS: Three representative conventional chondrosarcoma cell lines (CH2879 [IDH wildtype], JJ012 [IDH1 mutant], and SW1353 [IDH2 mutant]) were cultured as alginate spheroids and treated with talazoparib (0.001 to 10 µM), temozolomide (0.01 to 100 µM), or combinations of these drugs for 3, 7, and 14 days, representing different stages of spheroid growth. The cell lines were selected to represent a variety of IDH mutation statuses and were previously validated in spheroid culturing. Temozolomide was chosen because of its previous success when combined with PARP inhibitors, dissimilar to other commonly used chemotherapies. The effect on spheroid viability was assessed using three cell viability assays. Additionally, spheroid count, morphology, proliferation, and apoptosis were assessed. The effect of talazoparib (5 to 10 nM) combined with Æ´-radiation applied using a 137 C source (0 to 6 Gy) was assessed as surviving fractions by counting the number of spheroids (three). The therapeutic synergy of low-concentration talazoparib (5 to 10 nM) with temozolomide or radiotherapy was determined by calculating Excess over Bliss scores. RESULTS: Talazoparib treatment reduced the spheroid viability of all three cell lines after 14 days (IC 50 ± SD of CH2879: 0.1 ± 0.03 µM, fold change: 220; JJ012: 12 ± 1.4 µM, fold change: 4.8; and SW1353: 1.0 ± 0.2 µM, fold change: 154), compared with 3-day treatments of mature spheroids. After 14 days of treatment, the Excess over Bliss scores for 100 µM temozolomide and talazoparib indicated synergistic efficacy (Excess over Bliss scores: CH2879 59% [lower 95% CI 52%], JJ012 18% [lower 95% CI 8%], and SW1353 55% [lower 95% CI 25%]) of this combination treatment. A stable synergistic effect of talazoparib and radiotherapy was present only in JJ012 spheroids at a 4GÆ´ radiation dose (Excess over Bliss score: 22% [lower 95% CI 6%]). CONCLUSION: In our study, long-term PARP inhibition was more effective than short-term treatment, and only one of the three chondrosarcoma spheroid lines was sensitive to combined PARP inhibition and radiotherapy. These findings suggest subsequent animal studies should focus on long-term PARP inhibition, and temozolomide combined with talazoparib has a higher chance of success than combination with radiotherapy. CLINICAL RELEVANCE: Combination treatment of talazoparib and temozolomide was effective in reducing the viability of chondrosarcoma spheroids and spheroid growth, regardless of IDH mutation status, providing rationale to replicate this treatment combination in an animal chondrosarcoma model.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Condrossarcoma/radioterapia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Alginatos/uso terapêutico
11.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614283

RESUMO

Chondrosarcoma is the second most common type of bone cancer. Surgical resection is the best choice for clinical treatment. High-grade chondrosarcoma is destructive and is more possible to metastasis, which is difficult to remove using surgery. Doxorubicin (Dox) is the most commonly used chemotherapy drug in the clinical setting; however, drug resistance is a major obstacle to effective treatment. In the present study, we compared Dox-resistant SW1353 cells to their parental cells using RNA sequencing (RNA-Seq). We found that the apelin (APLN) pathway was highly activated in resistant cells. In addition, tissue array analysis also showed that APLN was higher in high-grade tissues compared to low-grade tissues. APLN is a member of the adipokine family, which is a novel secreted peptide with multifunctional and biological activities. Previously, studies have shown that inhibition of the APLN axis may have a therapeutic benefit in cancers. However, the role of APLN in chondrosarcoma is completely unclear, and no related studies have been reported. During in vitro experiments, APLN was also observed to be highly expressed and secreted in Dox-resistant cells. Once APLN was knocked down, it could effectively improve its sensitivity to Dox. We also explored possible upstream regulatory microRNAs (miRNAs) of APLN through bioinformatics tools and the results disclosed that miR-631 was the most likely regulator of APLN. Furthermore, the expression of miR-631 was lower in the resistant cells, but overexpression of miR-631 in the Dox-resistant cell lines significantly increased the Dox sensitivity. These results were also observed in another chondrosarcoma cell line, JJ012 cells. Taken together, these findings will provide rationale for the development of drug resistance biomarkers and therapeutic strategies for APLN pathway inhibitors to improve the survival of patients with chondrosarcoma.


Assuntos
Apelina , Neoplasias Ósseas , Condrossarcoma , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Humanos , Apelina/genética , Apelina/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Condrossarcoma/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico
12.
Cell Cycle ; 22(8): 939-950, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636023

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor and master transcription factor of adipogenesis-related genes, and has been reported as an antitumor target for chondrosarcomas. Herein, we show that the nonsteroidal anti-inflammatory drug, zaltoprofen, induces the expression of PPARγ at the mRNA and protein levels, following the induction of PPARγ-activating factors, such as Krox20, C/EBPß, and C/EBPα, in human extraskeletal chondrosarcoma H-EMC-SS cells. Upregulation of the cell cycle checkpoint proteins, p21, p27, and p53, was observed upon treatment of H-EMC-SS cells with zaltoprofen, which probably resulted in the inhibition of proliferation of these cells observed in vitro. Zaltoprofen treatment inhibited tumor growth, induced tumor cell apoptosis, and was well tolerated in a mouse model of extraskeletal myxoid chondrosarcoma. Our results provide mechanistic insights into the therapeutic effect of zaltoprofen that should promote further studies on the rational use of this drug for the effective treatment of sarcomas.


Assuntos
Condrossarcoma , PPAR gama , Animais , Humanos , Camundongos , Anti-Inflamatórios , Proteínas de Ciclo Celular/metabolismo , Condrossarcoma/tratamento farmacológico , Condrossarcoma/metabolismo , Condrossarcoma/patologia , PPAR gama/metabolismo , Proteína Supressora de Tumor p53/genética , Inibidor de Quinase Dependente de Ciclina p27 , Inibidor de Quinase Dependente de Ciclina p21
14.
Strahlenther Onkol ; 199(2): 160-168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36149438

RESUMO

BACKGROUND: This study aimed to compare the results of irradiation with protons versus irradiation with carbon ions in a raster scan technique in patients with skull base chordomas and to identify risk factors that may compromise treatment results. METHODS: A total of 147 patients (85 men, 62 women) were irradiated with carbon ions (111 patients) or protons (36 patients) with a median dose of 66 Gy (RBE (Relative biological effectiveness); carbon ions) in 4 weeks or 74 Gy (RBE; protons) in 7 weeks at the Heidelberg Ion Beam Therapy Center (HIT) in Heidelberg, Germany. The median follow-up time was 49.3 months. All patients had gross residual disease at the beginning of RT. Compression of the brainstem was present in 38%, contact without compression in 18%, and no contact but less than 3 mm distance in 16%. Local control and overall survival were evaluated using the Kaplan-Meier Method based on scheduled treatment (protons vs. carbon ions) and compared via the log rank test. Subgroup analyses were performed to identify possible prognostic factors. RESULTS: During the follow-up, 41 patients (27.9%) developed a local recurrence. The median follow-up time was 49.3 months (95% CI: 40.8-53.8; reverse Kaplan-Meier median follow-up time 56.3 months, 95% CI: 51.9-60.7). No significant differences between protons and carbon ions were observed regarding LC, OS, or overall toxicity. The 1­year, 3­year, and 5­year LC rates were 97%, 80%, and 61% (protons) and 96%, 80%, and 65% (carbon ions), respectively. The corresponding OS rates were 100%, 92%, and 92% (protons) and 99%, 91%, and 83% (carbon ions). No significant prognostic factors for LC or OS could be determined regarding the whole cohort; however, a significantly improved LC could be observed if the tumor was > 3 mm distant from the brainstem in patients presenting in a primary situation. CONCLUSION: Outcomes of proton and carbon ion treatment of skull base chordomas seem similar regarding tumor control, survival, and toxicity. Close proximity to the brainstem might be a negative prognostic factor, at least in patients presenting in a primary situation.


Assuntos
Condrossarcoma , Cordoma , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Terapia com Prótons , Neoplasias da Base do Crânio , Masculino , Humanos , Feminino , Prótons , Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Cordoma/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Condrossarcoma/etiologia , Íons , Carbono/uso terapêutico , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Base do Crânio/tratamento farmacológico , Base do Crânio/patologia , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos
15.
J Bone Joint Surg Am ; 104(24): 2153-2159, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36367764

RESUMO

BACKGROUND: Irrigation is commonly used as an adjuvant treatment during the intralesional curettage of bone tumors. The goal of the present study was to analyze the in vitro cytotoxicity of commonly used irrigation solutions on chondrosarcoma and giant cell tumor (GCT) cells as there is no consensus on which solution leads to the greatest amount of cell death. METHODS: An in vitro evaluation was performed by exposing human GCT and human chondrosarcoma cell lines to 0.9% saline solution, sterile water, 70% ethanol, 3% hydrogen peroxide, 0.05% chlorhexidine gluconate (CHG), and 0.3% povidone iodine solutions independently for 2 and 5 minutes. A low-cytotoxicity control (LCC) and a high-cytotoxicity control (HCC) were established to determine the mean cytotoxicity of each solution and each solution's superiority to LCC and non-inferiority to HCC. RESULTS: The present study demonstrated that 0.05% CHG was non-inferior to the HCC when chondrosarcoma was exposed for 5 minutes and when GCT was exposed for 2 and 5 minutes (mean cytotoxicity, 99% to 102%) (p < 0.003 for all). Sterile water was superior to the LCC when chondrosarcoma was exposed for 5 minutes and when GCT was exposed for 2 minutes (mean, 28% to 37%) (p < 0.05). Sterile water (mean, 18% to 38%) (p < 0.012) and 3% hydrogen peroxide (mean, 7% to 16%) (p < 0.001) were both inferior to the HCC. The 3 other solutions were non-superior to the LCC (mean, -24% to -5%) (p < 0.023). CONCLUSIONS: In vitro irrigation in 0.05% CHG provided high cytotoxicity, comparable with the HCC. Therefore, the use of a 0.05% CHG solution clinically could serve as a potential chemical adjuvant during intralesional curettage of chondrosarcoma and GCT. CLINICAL RELEVANCE: In an effort to reduce the burden of residual tumor cells, irrigation solutions are often utilized as adjuvant local therapy. Use of a 0.05% CHG solution clinically could serve as a potential chemical adjuvant to intralesional curettage of chondrosarcoma and GCT. Further in vivo studies may be indicated to assess clinical outcomes and safety associated with the use of 0.05% CHG in the treatment of chondrosarcoma and GCT.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Condrossarcoma , Tumor de Células Gigantes do Osso , Humanos , Peróxido de Hidrogênio/uso terapêutico , Etanol/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Antineoplásicos/uso terapêutico , Tumor de Células Gigantes do Osso/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Água
16.
Nutrients ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296960

RESUMO

Previous studies have demonstrated the anticancer activities of tocotrienol on several types of cancer, but its effects on chondrosarcoma have never been investigated. Therefore, this study aims to determine the anticancer properties of annatto tocotrienol (AnTT), γ-tocotrienol (γ-T3) and δ-tocotrienol (δ-T3) on human chondrosarcoma SW1353 cells. Firstly, the MTT assay was performed to determine the half-maximal inhibitory concentration (IC50) of tocotrienol on SW1353 cells after 24 h treatment. The mode of cell death, cell cycle analysis and microscopic observation of tocotrienol-treated SW1353 cells were then conducted according to the respective IC50 values. Subsequently, RNAs were isolated from tocotrienol-treated cells and subjected to RNA sequencing and transcriptomic analysis. Differentially expressed genes were identified and then verified with a quantitative PCR. The current study demonstrated that AnTT, γ-T3 and δ-T3 induced G1 arrest on SW1353 cells in the early phase of treatment (24 h) which progressed to apoptosis upon 48 h of treatment. Furthermore, tocotrienol-treated SW1353 cells also demonstrated large cytoplasmic vacuolation. The subsequent transcriptomic analysis revealed upregulated signalling pathways in endoplasmic reticulum stress, unfolded protein response, autophagy and transcription upon tocotrienol treatment. In addition, several cell proliferation and cancer-related pathways, such as Hippo signalling pathway and Wnt signalling pathway were also significantly downregulated upon treatment. In conclusion, AnTT, γ-T3 and δ-T3 possess promising anticancer properties against chondrosarcoma cells and further study is required to confirm their effectiveness as adjuvant therapy for chondrosarcoma.


Assuntos
Condrossarcoma , Tocotrienóis , Humanos , Tocotrienóis/farmacologia , Transcriptoma , Linhagem Celular Tumoral , Vitamina E/farmacologia , Apoptose , Proliferação de Células , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética
18.
BMC Cancer ; 22(1): 758, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820864

RESUMO

BACKGROUND: Although chondrosarcoma is the second most common primary malignant bone tumor, treatment options are limited due to its extensive resistance to a chemo- and radiation therapy. Since shikonin has shown potent anticancer activity in various types of cancer cells, it represents a promising compound for the development of a new therapeutic approach. METHODS: The dose-relationships of shikonin and its derivatives acetylshikonin and cyclopropylshikonin on two human chondrosarcoma cell lines were measured using the CellTiter-Glo®. The changes in the cell cycle were presented by flow cytometry. Protein phosphorylation and expression apoptotic markers, MAPKs and their downstream targets were analyzed using western blotting and gene expression were evaluated using RT-qPCR. RESULTS: Chondrosarcoma cells showed a dose-dependent inhibition of cell viability after treatment with shikonin and its derivatives, with the strongest effect for shikonin and IC50 values of 1.3 ± 0.2 µM. Flow cytometric measurements revealed a G2/M arrest of the cells after treatment. Protein and gene expression analysis demonstrated a dose-dependent downregulation of survivin and XIAP, and an upregulation of Noxa, γH2AX, cleaved caspase-8, -9, -3, and -PARP. Furthermore, the expression of various death receptors was modulated. As MAPK signaling pathways play a key role in tumor biology, their phosphorylation pattern and their corresponding downstream gene regulation were analyzed. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase of pAKT and the MAPKs pERK, pJNK, and pp38 in a dose-dependent manner. CONCLUSIONS: These data demonstrated the significant anti-tumorigenic effect of shikonin derivatives in chondrosarcoma and encourage further research.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Proteínas Quinases Ativadas por Mitógeno , Naftoquinonas , Receptores de Morte Celular , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Humanos , Naftoquinonas/farmacologia , Receptores de Morte Celular/metabolismo
19.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742867

RESUMO

Bone sarcomas have not shown a significant improvement in survival for decades, due, in part, to the development of resistance to current systemic treatments, such as doxorubicin. To better understand those mechanisms mediating drug-resistance we generated three osteosarcoma and one chondrosarcoma cell lines with a stable doxorubicin-resistant phenotype, both in vitro and in vivo. These resistant strains include a pioneer model generated from a patient-derived chondrosarcoma line. The resistant phenotype was characterized by a weaker induction of apoptosis and DNA damage after doxorubicin treatment and a lower migratory capability. In addition, all resistant lines expressed higher levels of ABC pumps; meanwhile, no clear trends were found in the expression of anti-apoptotic and stem cell-related factors. Remarkably, upon the induction of resistance, the proliferation potential was reduced in osteosarcoma lines but enhanced in the chondrosarcoma model. The exposure of resistant lines to other anti-tumor drugs revealed an increased response to cisplatin and/or methotrexate in some models. Finally, the ability to retain the resistant phenotype in vivo was confirmed in an osteosarcoma model. Altogether, this work evidenced the co-existence of common and case-dependent phenotypic traits and mechanisms associated with the development of resistance to doxorubicin in bone sarcomas.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Condrossarcoma , Osteossarcoma , Antineoplásicos/farmacologia , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo
20.
Cancer Sci ; 113(7): 2397-2408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485870

RESUMO

Chondrosarcoma is the second most common primary malignant bone tumor. In this multicenter study, we sought to evaluate the disease-specific survival (DSS) and disease-free survival (DFS), and prognostic factors in patients with dedifferentiated chondrosarcoma (DDCS) or grade 3 chondrosarcoma (G3CS) in Japan. We retrospectively investigated the treatment outcomes and prognostic factors in 62 patients with DDCS and 19 patients with G3CS at 15 institutions participating in the Japanese Musculoskeletal Oncology Group. We also clarified significant clinicopathological factors for oncological outcomes. In surgery for primary lesions aimed at cure, a histologically negative margin (R0) was obtained in 93% (14/15) of patients with G3CS and 100% (49/49) of patients with DDCS. The 5-year DSS was 18.5% in patients with DDCS and 41.7% in patients with G3CS (p = 0.13). Local control was obtained in 80% (12/15) and 79.6% (39/49) of patients with G3CS and DDCS in the primary lesion after surgery with a wide surgical margin, respectively. In multivariate analysis, stage and no treatment/palliative treatment for the primary lesion were independent prognostic factors for DSS of DDCS, and age and no treatment/palliative treatment for DSS of G3CS. The 5-year DFS rate was 22.8% in 26 patients with DDCS who did not receive adjuvant chemotherapy, and 21.4% in 14 patients who received adjuvant chemotherapy. The prognosis of DDCS remains poor, although R0 resection was carried out in most cases. Effective and/or intensive chemotherapeutic regimens or agents should be considered or developed for patients with high-grade chondrosarcoma, particularly for those with DDCS.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Neoplasias Ósseas/patologia , Condrossarcoma/tratamento farmacológico , Condrossarcoma/patologia , Humanos , Margens de Excisão , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...